Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available February 12, 2026
-
Förster resonance energy transfer (FRET) spectrometry is a method for determining the quaternary structure of protein oligomers from distributions of FRET efficiencies that are drawn from pixels of fluorescence images of cells expressing the proteins of interest. FRET spectrometry protocols currently rely on obtaining spectrally resolved fluorescence data from intensity-based experiments. Another imaging method, fluorescence lifetime imaging microscopy (FLIM), is a widely used alternative to compute FRET efficiencies for each pixel in an image from the reduction of the fluorescence lifetime of the donors caused by FRET. In FLIM studies of oligomers with different proportions of donors and acceptors, the donor lifetimes may be obtained by fitting the temporally resolved fluorescence decay data with a predetermined number of exponential decay curves. However, this requires knowledge of the number and the relative arrangement of the fluorescent proteins in the sample, which is precisely the goal of FRET spectrometry, thus creating a conundrum that has prevented users of FLIM instruments from performing FRET spectrometry. Here, we describe an attempt to implement FRET spectrometry on temporally resolved fluorescence microscopes by using an integration-based method of computing the FRET efficiency from fluorescence decay curves. This method, which we dubbed time-integrated FRET (or tiFRET), was tested on oligomeric fluorescent protein constructs expressed in the cytoplasm of living cells. The present results show that tiFRET is a promising way of implementing FRET spectrometry and suggest potential instrument adjustments for increasing accuracy and resolution in this kind of study.more » « less
-
The quaternary organization of rhodopsin-like G protein-coupled receptors in native tissues is unknown. To address this we generated mice in which the M 1 muscarinic acetylcholine receptor was replaced with a C-terminally monomeric enhanced green fluorescent protein (mEGFP)–linked variant. Fluorescence imaging of brain slices demonstrated appropriate regional distribution, and using both anti-M 1 and anti–green fluorescent protein antisera the expressed transgene was detected in both cortex and hippocampus only as the full-length polypeptide. M 1 -mEGFP was expressed at levels equal to the M 1 receptor in wild-type mice and was expressed throughout cell bodies and projections in cultured neurons from these animals. Signaling and behavioral studies demonstrated M 1 -mEGFP was fully active. Application of fluorescence intensity fluctuation spectrometry to regions of interest within M 1 -mEGFP–expressing neurons quantified local levels of expression and showed the receptor was present as a mixture of monomers, dimers, and higher-order oligomeric complexes. Treatment with both an agonist and an antagonist ligand promoted monomerization of the M 1 -mEGFP receptor. The quaternary organization of a class A G protein-coupled receptor in situ was directly quantified in neurons in this study, which answers the much-debated question of the extent and potential ligand-induced regulation of basal quaternary organization of such a receptor in native tissue when present at endogenous expression levels.more » « less
-
Fluorescence-based Methods for the Study of Protein-Protein Interactions Modulated by Ligand Bindingnull (Ed.)Background: The growing evidence that G protein-coupled receptors (GPCRs) not only form oligomersbut that the oligomers also may modulate the receptor function provides a promising avenue in the area ofdrug design. Highly selective drugs targeting distinct oligomeric sub-states offer the potential to increase efficacywhile reducing side effects. In this regard, determining the various oligomeric configurations and geometricsub-states of a membrane receptor is of utmost importance. Methods: In this report, we have reviewed two techniques that have proven to be valuable in monitoring thequaternary structure of proteins in vivo: Fӧrster resonance energy transfer (FRET) spectrometry and fluorescenceintensity fluctuation (FIF) spectrometry. In FRET spectrometry, distributions of pixel-level FRET efficiencyare analyzed using theoretical models of various quaternary structures to determine the geometry andstoichiometry of protein oligomers. In FIF spectrometry, spatial fluctuations of fluorescent molecule intensitiesare analyzed to reveal quantitative information on the size and stability of protein oligomers. Results: We demonstrate the application of these techniques to a number of different fluorescence-based studiesof cells expressing fluorescently labeled membrane receptors, both in the presence and absence of variousligands. The results show the effectiveness of using FRET spectrometry to determine detailed information regardingthe quaternary structure receptors form, as well as FIF and FRET for determining the relative abundanceof different-sized oligomers when an equilibrium forms between such structures. Conclusion: FRET and FIF spectrometry are valuable techniques for characterizing membrane receptor oligomers,which are of great benefit to structure‐based drug design.more » « less
An official website of the United States government
